Feature Selection for Reliable Tracking using Template Matching
نویسندگان
چکیده
A new feature selection method for reliable tracking is presented. In this paper, it is assumed that features are tracked by template matching where small regions around the features are defined as templates. The proposed method selects features based on the upper bound of the average template matching error. This selection criterion is directly related to the reliability of tracking and hence, the performance is better than that of other feature detectors. Experimental results are presented to confirm the efficiency of the proposed method.
منابع مشابه
Maximum-Likelihood Template Matching
In image matching applications such as tracking and stereo matching, it is common to use the sum-of-squareddi erences (SSD) measure to determine the best match for an image template. However, this measure is sensitive to outliers and is not robust to template variations. We describe a robust measure and eÆcient search strategy for template matching with a binary or greyscale template using a ma...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملMaximum-Likelihood Image Matching
ÐImage matching applications such as tracking and stereo commonly use the sum-of-squared-difference (SSD) measure to determine the best match. However, this measure is sensitive to outliers and is not robust to template variations. Alternative measures have also been proposed that are more robust to these issues. We improve upon these using a probabilistic formulation for image matching in term...
متن کاملDiscriminative Nonorthogonal Binary Subspace Tracking
Visual tracking is one of the central problems in computer vision. A crucial problem of tracking is how to represent the object. Traditional appearance-based trackers are using increasingly more complex features in order to be robust. However, complex representations typically will not only require more computation for feature extraction, but also make the state inference complicated. In this p...
متن کاملEfficient Discriminative Nonorthogonal Binary Subspace with its Application to Visual Tracking
One of the crucial problems in visual tracking is how the object is represented. Conventional appearance-based trackers are using increasingly more complex features in order to be robust. However, complex representations typically not only require more computation for feature extraction, but also make the state inference complicated. We show that with a careful feature selection scheme, extreme...
متن کامل